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Computationally e$cient methods are described by which the results of a "nite element
analysis of a system may be post-processed to form energy #ow models, yielding time and,
perhaps, frequency average subsystem energies as well as input and dissipated powers. The
methods are particularly e$cient for excitation which is spatially distributed or broadband
(e.g., rain-on-the-roof ) or if the frequency average response is required. First a method based
on a global "nite element analysis is presented. This involves a global modal decomposition
and a reordering of the subsequent numerical calculations. The properties of the distribution
of the excitation and the system's mass and sti!ness lead to subsystem force distribution,
mass distribution and sti!ness distribution matrices. The response is given by a sum of terms
involving the interaction of a pair of global modes, the contribution of each pair depending
on the appropriate elements of the distribution matrices. Frequency averaging is performed
by separating the resulting frequency-dependent terms and integrating. In most practical
cases this integration can be done analytically. Next an alternative method involving
component mode synthesis is described. In this, individual "nite element analyses are
performed for each subsystem using, here, the "xed interface method. These are then
assembled to perform a global modal analysis, with the order of the model being much
reduced. The consequent results are then post-processed in the same way. Finally, a system
comprising three coupled plates is presented as a numerical example.

( 2000 Academic Press
1. INTRODUCTION

At lower frequencies, the dynamic behaviour of a structure is often expressed in terms of the
magnitude and phase of the response at discrete frequencies and discrete locations. At
higher frequencies, when high order modes contribute to the response, di$culties arise. The
response of the system becomes sensitive to small details in its construction, its properties
and its boundary conditions, which are not known to su$cient accuracy. Energy-based
approaches such as statistical energy analysis (SEA) are therefore often adopted.

Energy #ow methods give a &&broad-brush'' description of the dynamic behaviour of
a structure. The system is divided into a (relatively small) number of coupled subsystems
and the response to broadband excitation described in terms of the time and, normally,
frequency average kinetic, potential and total energy in each subsystem, the energy #ows
between them and the input powers.

This paper concerns how energy #ow models may be formed from "nite element analysis
(FEA). Various systematic and numerically e$cient techniques are described by which the
time and frequency average subsystem powers and energies may be determined. The
*Now at Vibro-Acoustic Sciences Inc., 12555 High Blu! Drive, Suite 310, San Diego, CA 92130, USA.
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reasons why this may be performed include the following. First, one might wish to construct
an energy #ow model of a speci"c system, under the assumption that the (broadband)
frequency average response of the chosen system is indicative of that of any similar system.
One might also use such a model to conduct numerical experiments in order to estimate
parameters such as the SEA coupling loss factors between connected subsystems.
Alternatively, one may intend to explore situations where the accuracy of methods such as
SEA is suspect, for example if the coupling is strong, if there are only a few modes of one or
more subsystems in the frequency band of interest or if there is only moderate uncertainty in
the subsystem properties. Finally, deterministic analysis of a single system may be used as
the basis for the study of the response statistics of a population of systems.

Applications of FEA to energy #ow modelling are not new. Lyon [1] suggested the use of
FEA in predicting SEA coupling loss factors during the early development of SEA. Various
studies [2}6] have viewed the response of a "nite element model in terms of an energy #ow
model. In all these studies a global FEA was performed on the system. The use of a lumped
mass formulation is implicitly assumed and the kinetic energy found from a single
summation involving the nodal mass and nodal velocity of responding nodes. Shankar and
Keane [7, 8] develop an alternative &&local'' method, a receptance approach in which the
response of each subsystem is described by Green functions. These are given by sums of
subsystem modes which are found by analyzing each subsystem in turn with the coupling
interfaces free. The uncoupled modes may be found analytically [7] or using FEA [8]. Such
an approach substantially reduces the computational e!ort, requiring a number of smaller "nite
element analyses, while the size of the model used to calculate the forced response depends on
the number of coupling degrees of freedom. While the approach allows for localized damping, it
is limited to excitation at discrete frequencies and a number of discrete locations.

The "nite element method has also been used to calculate structural intensity [10, 11].
Since intensity requires an accurate description of various spatial derivatives, a large
number of modes are needed for convergence. Furthermore, since the intensity is sensitive
to the relative phases of these modes, the predictions are potentially very sensitive to the
accuracy of the data used to describe the system and to FEA discretization errors.

In this paper, computationally e$cient methods of determining an energy #ow model
from a deterministic FEA are described. The methods require the subsystem mass and
sti!ness matrices to be found. This may be performed by any FEA package. Then a single,
global modal analysis is performed, as described in the next section (a component mode
approach is described later). The results of the modal analysis are then processed in a number
of ways which are not available in commercial packages to give substantial gains in e$ciency.
First, a signi"cant amount of pre- and post-processing of the system mass, sti!ness and modal
matrices can be performed to avoid much repetitive calculation. This is especially true for
distributed excitation such as &&rain-on-the-roof ''. Secondly, frequency averaging can be
performed e$ciently in a number of ways, as discussed in Section 3. This section also
includes approximate expressions for the broadband average behaviour of a lightly damped
system, which circumvents the need for any numerical frequency averaging.

An alternative to the global approach, and one which decreases the size of the numerical
analysis signi"cantly, is to perform individual FEA for each subsystem and couple these
analyses together. Such an approach, using component-mode synthesis (CMS), is described in
Section 4 and "ts well with the SEA philosophy of coupled subsystem modes. The method is an
extension of the global approach of Section 2. A numerical example is considered in Section 5.

The current paper concerns only cases where the damping in the system can be described
in terms of a loss factor associated with each global mode, i.e., when the damping is
proportional. The method can be extended straightforwardly for arbitrary spatial
distributions of damping by allowing complex modal properties: this is not discussed here.
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2. GLOBAL FINITE ELEMENT ANALYSIS AND ENERGY FLOW MODELS

This section concerns how the results of a global FEA can be used to form energy #ow
models. The system is assumed to be divided into two or more subsystems. Here it is
assumed that subsystem a is excited. Expressions are developed for the input power, the
total kinetic and potential energies in the system, the power dissipated and the kinetic and
potential energy in subsystem b and the coupling powers for subsystem b.

The steps involved are brie#y as follows. First the system is discretized and mass and
sti!ness matrices determined for each subsystem and for the system as a whole. Expressions
for response quantities (energies, powers, etc.) are developed in terms of nodal responses.
The second step is to determine the response to distributed time harmonic excitation. This is
achieved by decomposing the response into global modes of vibration to make further
calculations more e$cient. The third step is to determine the response to particular forms of
excitation, and, in particular, spatially uncorrelated excitation such as &&rain-on-the-roof ''.
The response to broadband excitation is found in Section 3.

2.1. FINITE ELEMENT DISCRETIZATION

The structure is discretized and the mass and sti!ness matrices M and K determined. The
response of the undamped system is then described by

MuK#Ku"fu, (1)

where u is a vector of nodal degrees of freedom and fu is a vector of corresponding nodal
forces. (A list of symbols is given in Appendix C.) At the same time, the mass and sti!ness
matrices M

b
and K

b
are found for subsystem b. The nodal co-ordinates u

b
for subsystem

b are a subset of the global co-ordinates u and are related to them by

u
b
"S

b
u, (2)

where S
b

is a transformation matrix. Some of the global co-ordinates u lie in only one
subsystem, some lie in two or more (and hence represent coupling co-ordinates) and,
possibly, some in no subsystem, these being associated only with coupling degrees of
freedom. If the response is known, the potential and kinetic energies of the whole system
and of subsystem b follow from
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where the superscript T denotes the transpose.

2.2. RESPONSE TO TIME HARMONIC EXCITATION: MODAL DECOMPOSITION

It is now assumed that the excitation is time harmonic, so that fu"Fu exp(iut), Fu being
a vector of force amplitudes. (In this paper the upper-case letter will be used to denote the
complex amplitude of a time harmonic variable represented by the lower-case letter, and the
time dependence will generally be suppressed.) Damping is allowed by introducing a loss
factor g, assumed constant across the system. The response is then given by

U"[K(1#ig)!u2M]~1Fu. (4)
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The time-averaged total potential and kinetic energies become
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where H denotes the complex conjugate, or Hermitian transpose and ReM ) N denotes the
real part. Similar expressions hold for the subsystem energies while the time-averaged input
and coupling powers and the power dissipated in subsystem b are
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where F
ab

and U
ab

are the internal forces and displacements at the coupling co-ordinates
between subsystems a and b. In practice, it is perhaps easier to "nd the coupling power from
conservation of energy considerations, especially if a coupling co-ordinate is common to
three or more subsystems, when the coupling powers are not de"ned uniquely [12].

Although it is quite possible to calculate the response using equations (4)}(6), it is very
time-consuming to perform the matrix inversion of equation (4) at each frequency. It is
numerically more e$cient to proceed by modal decomposition, using the global modes of
the whole system. While there are as many such modes as there are nodal co-ordinates, the
contributions of many of the modes can often be neglected.

A modal analysis yields the natural frequencies u
j
and mode shapes /

j
for j"1,2 , m,

where m is the number of retained modes. The mode shapes are assumed to be mass
normalized, so that the orthogonality conditions are
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j
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m
], (7)

where P is the modal matrix, whose columns are the mode shapes, and diag( ) ) indicates
a diagonal matrix. The modal forces Fy

j
and the response >

j
of the jth mode are then
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where the modal receptance is given by

a
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(9)

and where the response, equation (4), becomes U"PY, Y being the vector of modal
responses. The total system time-averaged potential and kinetic energies become
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and are simply the sums of the individual energies associated with each of the modes. The
expressions for the subsystem energies are more complicated, since the mode shapes are
orthogonal over the whole system and not over the individual subsystems. For subsystem b,
they are given by
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are real, symmetric and generally full. These expressions are here termed the sti!ness and
mass distribution matrices of subsystem b, and represent the sti!ness and mass of subsystem
b expressed in global modal co-ordinates.

2.3. COMPUTATIONAL CONSIDERATIONS

While equation (11) can be used to calculate the response in subsystem b, substantial
computational bene"ts can be made by rearranging this expression. Equation (11) can be
written as a sum of cross-modal terms involving global modes m and p, so, for example,
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while the modal response is
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where the summation runs over all excited nodes. Substitution and reordering the two
summations gives
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where the expression
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is termed the (m, p)th force distribution term associated with subsystem a. The force
distribution matrix of subsystem a, w

a
, determines the applied excitation in global modal

co-ordinates and is given by

w
a
"PTST

a
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a
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"Fu*

j
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k
, (17)

where A depends on the magnitudes and phases of the various nodal forces. Gains in
computational e$ciency arise because the terms t

a,mp
and i

b,mp
and their product need only

be evaluated once.

2.4. SPATIALLY DISTRIBUTED EXCITATION AND RAIN-ON-THE-ROOF

Often the spatial distribution of the excitation is frequency independent, although the
absolute levels may not be. Under this circumstances the force distribution matrix w

a
need

only be evaluated once, leading to substantial reductions in computational e!ort. In this
section, di!erent forms of excitation are discussed with particular reference to the case of
rain-on-the-roof excitation, where further simpli"cations are possible.

2.4.1. Spatially distributed coherent excitation

The excitation may be broadband but coherent. In general, A and w
a
are full, complex

and Hermitian. (If, however, the phase of the excitation is constant across the subsystem
then the subsystem force distribution matrix becomes real.) The total potential and kinetic
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energies and input power to subsystem a are given by
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The force distribution term t
a,mm

indicates how well the mth global mode is excited and
depends on the mode shape within the excited subsystem and the force distribution. The
potential and kinetic energies in subsystem b are given by
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where the term C
mp

is frequency dependent and is given by

C
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The response in subsystem b depends not only on how well the global modes are excited
(through the force distribution terms) but also how strongly these modes respond in
subsystem b. Computational gains arise because the terms in parentheses in equation (19)
need only be evaluated once.

2.4.2. Spatially distributed incoherent excitation: rain-on-the roof

Suppose now that the excitation is broadband but incoherent, in that it is spatially
delta-correlated. (Equivalently, one might consider the case where the excitation is
coherent, but the relative phase between excitations applied at di!erent locations is
unknown, or the case of predicting the expected response to a point force applied at some
unknown location). Under these circumstances, the energy response can be found by
summing the energy response due to excitation applied to each point in the excited
subsystem.

One particular excitation, rain-on-the-roof, is of particular interest. This is de"ned here as
spatially delta-correlated, broadband excitation whose magnitude at any location is
proportional to the local mass density. Such excitation excites the local modes of the excited
subsystem equally (i.e., it inputs power equally into all modes). When the structure is then
discretized to form the FE model, then it can be shown (Appendix A) that the matrix A is
real and proportional to the mass matrix of the excited subsystem, M

a
, if a consistent

formulation is adopted in deriving the nodal forces. The constant of proportionality
then indicates the level of excitation and w

a
then equals the subsystem mass distribution

matrix l
a
.

Again, it should be noted that the terms in parentheses in equation (19) need only be
evaluated once, and only the vector a needs to be calculated at di!erent frequencies.

3. FREQUENCY AVERAGES

Most applications of energy #ow methods involve random broadband excitation and
interest lies in frequency-averaged response quantities. In most cases, furthermore, the
spatial distribution of the excitation is independent of frequency, while the level of
excitation may not be. Under this circumstances, the terms A

jk
are related to the power- and

cross-spectral densities of the nodal forces so that w
a
can be written as

w
a
(u)"R2 (u)w@

a
, (21)
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where w@
a

is found by putting some reference nodal force equal to unity and where R2(u)
represents the frequency variation. For the particular case of rain, for example, A"M

a
and

w@
a
"l

a
. The excitation has a power-spectral density S

ff
such that R2(u)"S

ff
(u)du in

a frequency band du. The frequency-averaged response is then found by averaging
equations (18) and (19) over the frequency band of interest. Note, however, that only the
terms, a, u and perhaps S

ff
are frequency dependent, so that the summation and the

frequency integration can be performed independently, resulting in much reduced
computation time. For example, over a frequency band X of bandwidth B
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Equations (18) and (19) can be integrated numerically. However, if S
ff

and g are constant
(and perhaps also if they are known functions of frequency) then the frequency integrals can
be evaluated analytically. This yields further substantial gains in numerical e$ciency. In
practice, if g is a function of frequency, but the damping is light such that g2@1, then
negligible errors are introduced by replacing g (u) with g

j
"g(u

j
) in a
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(u). Under these

circumstances the frequency averages become
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The frequency integrals J are all integrable in closed form, the expressions being given in
Appendix B. The terms J

1, i
, J

2, i
and J

3, i
are generally small except for the modes i which are

resonant, i.e., if u lies in X. The cross-mode coupling terms J
4, ij

and J
5, ij

are generally small
except for those mode pairs which overlap, i.e., whose natural frequencies are close, their
separation being less than the modal half-power bandwidths, and which are resonant.
Therefore, computational savings can be made by limiting the cross-modal summations to
modes within and close to the frequency band of interest, although care should be taken if
there are relatively few resonant modes in X , since non-resonant modes may contribute
signi"cantly to the in"nite sums.

3.1. SMALL DAMPING APPROXIMATIONS

If the damping is light such that g2@1, then a
j
(u) and the integrands of equation (23) are

dominated by sharp resonances around the corresponding natural frequencies u
j
. For
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modes which are resonant in X the integrals are well approximated by replacing the
frequency range of integration by (0, R) (e.g., reference [13]), in which case
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For non-resonant modes (i.e, those for which u
j
NX) the integrals are approximately zero,

these modes contributing very little to the total response. Similarly, the integrals J
4, ij
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are approximated by
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Note that these cross-modal terms are large if the modal separation Du
i
!u

j
D is smaller

than the average modal bandwidth D"(g
i
u

i
#g

j
u

j
)/2, that is, if the modes overlap. The

terms i
b, ij

and k
b, ij

then indicate the degree to which the (i, j)th modal pair contributes to
the potential and kinetic energies in the bth subsystem. Note also that there is a clear
similarity between these expressions (particularly the denominators) and those that de"ne
the coupling power between two coupled oscillators [1], the di!erence being that here the
coupling occurs between two global modes of vibration rather than two modes of the
uncoupled system.

Thus, the response quantities reduce to a sum of contributing modal terms. The input
power and total energies depend on the total number of modes in the frequency band of
excitation, while the subsystem energies depend not only on the total number of modes in
X but also on the modal overlap, i.e., how many cross-modal terms contribute to J

4
and J

5
.

4. LOCAL FINITE ELEMENT ANALYSIS AND ENERGY FLOW MODELS

Rather than describing the response of the system in terms of a large number of nodal
degrees of freedom, it is computationally more e$cient to describe the response in terms of
the component modal responses of each subsystem. This forms the basis of
component-mode synthesis (CMS) [14]. The component modes may be found by
performing a "nite element analysis for each subsystem in turn, thus solving a number of
smaller problems rather than one large one. A CMS model is particularly well suited for
postprocessing into an energy #ow model, since the global degrees of freedom of the
structure are easily partitioned into subsystem degrees of freedom. In the following section
expressions for the system response using a "xed interface CMS approach [15] are derived.
The expressions are identical to those derived previously with the terms t, i and k now
being given in terms of component modal co-ordinates.

4.1. THE EQUATIONS OF MOTION

Four di!erent sets of co-ordinates are used to describe the response of the structure:
nodal, uncoupled component modal, coupled component modal and global modal degrees
of freedom. The structure is split into n subsystems and a "nite element model of each
subsystem is generated. The nodal degrees of freedom are contained in a vector u, which is
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partitioned into the degrees of freedom associated with each subsystem, so that

u"[uT
1

uT
2

2 uT
n
]T. (26)

Each subvector in equation (26) is further partitioned into interior and coupling degrees of
freedom, so that, for example, the degrees of freedom associated with the rth subsystem are
given by

u
r
"[uT

i
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c
]T
r
. (27)

The coupling degrees of freedom are degrees of freedom which are common to two or more
subsystems. The undamped equations of motion for the uncoupled structure can be written
as

muuK#kuu"fu, (28)

where mu and ku are block-diagonal, the rth submatrices on the diagonals being given by
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while the rth subvector associated with fu is given by
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r
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. (30)

A local modal analysis of each subsystem is then performed with the coupling degrees of
freedom associated with each subsystem being fully constrained. The nodal degrees of
freedom u, are related to a set of uncoupled component modal degrees of freedom q, by the
transformation

u"Tq, (31)

where the rth submatrix on the diagonal of T is given by
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and where Pq
r

is a matrix of the local mode shapes and v
r
is a matrix of constraint modes

given by
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The constraint modes give the shape of the subsystem when a particular coupling degree of
freedom is given a unit displacement or rotation, whilst all other coupling degrees of
freedom remain "xed. A fundamental assumption of CMS is that there are fewer component
modal degrees of freedom than nodal degrees of freedom. The uncoupled component modal
mass and sti!ness matrices are given by

mq"TTmuT; kq"TTkuT, (34)

where the rth submatrices on the respective diagonals of mq and kq are given by
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The local "nite element models are then coupled together by enforcing continuity
between the various coupling degrees of freedom. The global response of the structure is
then described by the set of coupled component modal co-ordinates x. The uncoupled
component modal co-ordinates can be related to these by a transformation matrix b,
such that

q"bx. (36)

The uncoupled component modal co-ordinates associated with the rth subsystem
are related to the set of coupled component mode co-ordinates using the appropriate
partition of b

q
r
"b

r
x. (37)

The undamped global equations of motion are then given by

mxxK#kxx"fx, (38)

where the global mass and sti!ness matrices and the global force vector are given by

mx"bTmqb; kx"bTkqb; fx"bTfq. (39)

4.2. CALCULATING THE RESPONSE: GLOBAL MODAL DECOMPOSITION

Following Section 2.2, if the excitation is time harmonic then the time-averaged response
quantities can be written in terms of the uncoupled component-mode co-ordinates as
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Equation (38) could be solved by matrix inversion. For example, the uncoupled
component-mode response in subsystem b is given by

Q
b
"b

b
[kx(1#ig)!u2mx]~1Fx. (41)

However, such an approach is still computationally expensive, even though the global mass
and sti!ness matrices are now much smaller than in the global FEA of Section 2. A more
e$cient procedure is to again perform a global modal analysis. This yields the global
natural frequencies u

j
and global mode shapes /

j
for j"1,2 , m. The global modes are

assumed to be mass normalized so that

PTmxP"I; PTkxP"diag(u2
j
) ; P"[/

1
/
2

2 /
m
] (42)

using the same notation for the global modal degrees of freedom and modal receptances as
in Section 2. The uncoupled component-mode response in subsystem b is then given by

Q
b
"b

b
Pdiag(a

j
)PTFx. (43)

The sti!ness and mass distribution matrices associated with subsystem b are therefore
given by

j
b
"PTbT

b
kq
b
b
b
P; l

b
"PTbT

b
mq

b
b
b
P. (44)
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Since there are signi"cantly fewer component modal degrees of freedom than nodal degrees
of freedom, equation (44) requires substantially less computation than equation (13).

4.3. COMPUTATIONAL CONSIDERATIONS

The issues discussed in Sections 2.3, 2.4 and 3 regarding e$cient computation apply
equally here. The potential energy can be written as

<
b
"

1

4
+
m,p

>*
m
>
p
i
b,mp

. (45)

Using the transformation matrices, the global modal response can be written in terms of the
local nodal forces as

>
p
"a

p
Fy
p
"a

p
+
j

P
jp

Fx
j
"a

p
+
j

P
jp

+
k

b
kj

Fq
k
"a

p
+
j

P
jp

+
k

b
kj

+
l

¹
lk
Fu

l
, (46)

where j runs over all coupled component modes, k runs over all uncoupled component
modes and l runs over all excited nodes. Substituting into equation (45) and reordering gives

<
b
"

1

4
+
m,p

a*
m
a
p
i
b,mp

+
j, r

P
jm

P
rp

+
k, s

b
kj

b
sr

+
l, t

¹
lk
¹
ts
Fu*

l
Fu
t
. (47)

The nodal force distribution matrix is de"ned by

Au
lt
"Fu*

l
Fu
t

(48)

and the subsystem kinetic and potential energies can then be written as

<
b
"

1

4
+
m,p

t
a,mp

i
b,mp

a*
m
a
p
; ¹

b
"

1

4
u2 +

m,p

t
a,mp

k
b,mp

a*
m
a
p
, (49)

where the global force distribution matrix is given by

w
a
"PTbT

a
TT
a
Au

a
T

a
b
a
P. (50)

The input power is given by

P
in
"

1

2
ReGiu+

m

t
a,mm

a
mH . (51)

For arbitrary force distributions, w
a

(equation (50)) may be complex as discussed
previously. For the case of rain-on-the-roof excitation, the nodal force distribution matrix
Au

a
is real and proportional to the nodal mass matrix mu

a
. Then w

a
is equal to the mass

distribution matrix l
a
of equation (44). Frequency averages can also be found by integrating

only those frequency-dependent terms, as described in Section 3.

5. NUMERICAL EXAMPLE

The use of the previous expressions is demonstrated by considering the response of the
plate structure shown in Figure 1. Three plates are joined together in a corner con"guration
with each plate representing a subsystem. The properties and dimensions of the structure



Figure 1. Three-plate structure.

TABLE 1

Structural properties

Young's modulus 210 GN/m2
Density 7800 kg/m3

Poisson's ratio 0)3
Loss factor 0)01
Thickness 0)001 m

¸
w

0)255 m
¸
h

0)225 m
¸
d

0)275 m
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are shown in Table 1. The energy associated with rigid-body motion is neglected.
Furthermore, in the frequency range of interest here, in-plane motion can be neglected and
the motion described purely in terms of bending vibrations. The modal densities of
subsystems 1, 2 and 3 are respectively 18)3, 22)3 and 19)7 modes per kHz. The structure is
modelled using a "xed interface component-mode synthesis approach. Each individual
plate is modelled using 144 Heterosis plate elements [16] with additional degrees of
freedom added to allow for in-plane displacements. The local eigenvalue problem is solved
using subspace iteration to obtain 35 local modes per subsystem. The global mass and
sti!ness matrices are then assembled and the "rst 100 global modes obtained. While this
procedure may be carried out by postprocessing the results from a commercial FE package,
in this example the routines were implemented using Matlab. The component-mode
synthesis approach reduces the size of the "nite element calculations: if a global "nite
element analysis were performed the model would have over 8000 degrees of freedom;
instead three "nite element problems, each with 2693 degrees of freedom, are solved; in the
global assembly 35 interior and 195 constraint degrees of freedom for each subsystem are
retained and the resulting global analysis has 396 degrees of freedom.

In Figure 2 the asymptotic global mode count and the FE computed mode count
(neglecting rigid-body modes) are compared. The mass and sti!ness distribution matrices
can be calculated using equation (44). These matrices only need to be evaluated once for



Figure 2. Mode count of three-plate structure:**, asymptotic mode count; ddd , FE computed mode count.
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a given structure. Figure 3 shows the mass distribution terms associated with the "rst 30
global modes for the three subsystems (neglecting rigid-body modes). The diagonal terms
indicate the proportions of the global modal masses associated with each subsystem. These
typically vary substantially from the distribution of actual mass across the subsystems: these
variations in the diagonal terms indicate that the global modes of the structure have
a tendency to be localized to one or two subsystems rather than be spread uniformly across
all three. As an example, Figure 4 shows the 22nd global mode, which is localized in the "rst
and second subsystems. The o!-diagonal mass distribution terms give an indication of the
mass orthogonality of the global modes when evaluated over various subsystems.

The global modal receptances can be calculated for various discrete excitation
frequencies. In this example, the response at each frequency is calculated using the "rst 100
global modes. The frequency terms in equation (19) can then be calculated. Figure 5 shows
the magnitude of the frequency-dependent terms associated with the kinetic energy, u2C

ij
,

for the "rst 30 modes, due to excitation at a frequency of 300 Hz. At this frequency, the
modal overlap is 0)18. Modes close to the excitation frequency have the largest response,
whilst the cross-modal response decreases as the di!erence in mode number increases.

The potential and kinetic energies in subsystem b are then found by evaluating the
appropriate scalar products of the matrices w

a
, j

b
, l

b
, C and u2C from equation (19).

Similarly, the input power to subsystem a is found by evaluating equation (18). An energy
in#uence coe$cient A

ba
can then be de"ned as the energy in the bth subsystem per unit

input power applied to subsystem a. Figure 6 shows the matrix of energy in#uence
coe$cients (EICs) for the structure, calculated using the "nite element approach, as
a function of frequency for discrete excitation frequency. Also shown in Figure 6 are
estimates of the EICs obtained using a traditional SEA model of the plate structure. The
discrete frequency "nite element response is seen to be distinctly resonant in nature.



Figure 3. Elements of the subsystem mass distribution matrices for the three-plate system, lowest 30 global
modes: (a) k

1, ij
; (b) k

2, ij
; (a) k

3, ij
.
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The frequency average response can be obtained using the analytical expressions for the
integrals J

i
given in Appendix A. As an example, the magnitudes of the "rst 30 rows and

columns of the matrix J
5

are shown in Figure 7, for excitation over a 100 Hz frequency
band, with a centre frequency of 300 Hz. The 100 Hz frequency band contains around six
global modes. The frequency average EICs are found by dividing the frequency average
energy in subsystem i, by the frequency averaged input power applied to subsystem j.
Figures 8 and 9 show frequency averaged EICs, found by frequency averaging over 100 and
200 Hz frequency bands respectively as functions of the centre frequency of the excitation. It
can be seen that SEA tends to overpredict the response in the undriven subsystems. This is
because, in this example, the subsystems are strongly coupled. For example, in the exact
wave theories in references [17, 18], the strength of coupling is quanti"ed in terms of
a parameter c, and the coupling is strong if c'1: here c is approximately 8 at a frequency of
750 Hz.

6. CONCLUDING REMARKS

In this paper, computationally e$cient methods of forming energy #ow models from
"nite element analyses were described. These involved both global and local "nite element



Figure 4. The 22nd global mode shape of the three-plate structure (note localization in subsystems 1 and 3).

Figure 5. Frequency-dependent cross-modal terms u2C
ij

for the three-plate system, lowest 30 global modes,
excitation at 300 Hz.
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models, the latter being based on component-mode synthesis. A global modal analysis is
then performed, leading to responses which are expressed in terms of a sum of components
which indicate the interaction of pairs of global modes.

The gains in numerical e$ciency arise from four sources: "rst because the numerical
operations involved in post-processing can be reordered in such a way that computationally
expensive calculations normally need to be performed only once; secondly, because the
terms which are frequency dependent (i.e, those involving the global modal receptances)



Figure 6. Energy in#uence coe$cients A
ij

for the three-plate system, discrete frequency excitation (i, j indicated
in upper right-hand corners of "gures); } } } SEA predictions.

Figure 7. Frequency-averaged integrals J
5, ij

for the three-plate system, lowest 30 global modes, frequency band
100 Hz centred at 300 Hz.
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Figure 8. Frequency-averaged energy in#uence coe$cients A
ij

for the three-plate system, discrete frequency
excitation (i, j indicated in upper right-hand corners of "gures): ** 100 Hz frequency averages; } } } SEA
predictions.
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can be factored out and the frequency averaging performed independently; thirdly, because
in many situations this frequency averaging can be performed analytically (and, in many
cases, the light damping, broadband approximations of equations (24) and (25) give
su$cient accuracy); and fourthly, because the component-mode approach per se
substantially reduces the order of the model required to accurately perform the global
modal analysis.

A numerical example of a system comprising three, edge-coupled, rectangular plates was
then considered. Finite element/energy #ow results were compared with traditional SEA
predictions. Even when frequency-averaged (e.g., Figures 8 and 9), this example indicates
potential applications of the method in two regards. First, there is a clear, non-smooth
frequency dependence*this arises because the response is given in terms of mode-pair
interactions, and in di!erent frequency bands di!erent numbers of modes interact and the
strength by which they are coupled is also frequency-dependent: hence &&exact'', numerical
results di!er from the asymptotic averages of SEA. Secondly, &&strong coupling'' e!ects are
evident, in that traditional SEA predictions themselves are inaccurate in this example*they
underpredict the broadband response of the driven subsystem and overpredict the
responses of the undriven ones: the asymptotic averages of SEA are themselves inaccurate.



Figure 9. Frequency-averaged energy in#uence coe$cients A
ij

for the three-plate system, discrete frequency
excitation (i, j indicated in upper right-hand corners of "gures): ** 200 Hz frequency averages: } } } SEA
predictions.
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APPENDIX A: RAIN-ON-THE-ROOF EXCITATION

Consider an excitation r(x) that is delta-correlated in space. Since the excitation is delta
correlated the total energy response can be calculated by calculating the response to
excitation at a particular location x, and then integrating over all possible locations.
Limiting attention to excitation within a particular element, the nodal forces that arise due
to excitation at a point x

0
within the element are given by

Fe"P
v

NeTr(x)d (x!x
0
) dv"NeTr(x

0
), (A.1)

where Ne is the matrix of element shape functions. From equation (17), the contribution to
A is given by the following element matrix:

Fe*FeT"NeTr* (x
0
)rT (x

0
)Ne. (A.2)

Here it is assumed that the components of the point force are uncorrelated, with the
magnitude in each direction being the same and given by Dr(x

0
) D. Equation (A.2) then

becomes

Fe*FeT"NeT Dr(x
0
) D2. (A.3)
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Integrating over all possible excitation locations within the element gives

Ae"P
x|e

NeTNe Dr (x) D2 dv. (A.4)

Thus if Dr(x) D2"R2o(x), where R2 is a constant independent of space and o(x) is the density,
then the nodal forces are proportional to the consistent mass matrix for an element. By
assembling the contributions from all other elements, it follows that the matrix A"R2M

a
,

where R2 now gives the level of rain excitation in Newtons squared per unit volume. In this
consistent formulation uncorrelated point forces give rise to coherent nodal forces. In
practice, normally only small errors are introduced by assuming the nodal forces are
uncorrelated and allocating nodal forces that are proportional to the mass lumped at each
node.

APPENDIX B: FREQUENCY INTEGRALS IN CLOSED FORM

The integrals J
i
over the frequency band X from u

1
to u

2
, are given by

J
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where

z
m
"u2

m
(1!ig); z

p
"u2

p
(1#ig) (B.6)

and the bandwidth B"u
2
!u

1
. A two-quadrant arc-tangent function can be used to

evaluate the integrals J
1
, J

2
, J

4
and J

5
. When evaluating J

3
it is necessary to use

a four-quadrant arc-tangent function. These integrals are only valid for non-zero natural
frequencies, the contribution to the response from rigid-body modes is therefore neglected.

APPENDIX C: NOMENCLATURE

A nodal force matrix, Fu*FuT
B bandwidth
f force vector
F force amplitude
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F
ab

coupling force
J
i

frequency integrals
ku nodal sti!ness matrix
kq uncoupled component modal sti!ness matrix
kx coupled component modal sti!ness matrix
K global sti!ness matrix
mu nodal mass matrix
mq uncoupled component modal mass matrix
mx coupled component modal mass matrix
M global mass matrix
P mode shape matrix
P
ab

coupling power between subsystems a and b
P
diss

dissipated power
P
in

input power
q uncoupled component modal degrees of freedom
R2 constant, rain excitation level
S
b

transformation matrix, equation (2)
S
ff

power spectral density
¹ kinetic energy
T transformation matrix, equation (31)
u nodal degrees of freedom
U nodal amplitudes
< potential energy
x coupled component modal degrees of freedom
Y global modal amplitudes
a global modal receptance
b transformation matrix, equation (36)
! mode pair receptance matrix, equation (20)
v constraint mode matrix
X frequency band
/ global mode shape
g loss factor
j
b

sti!ness distribution matrix associated with subsystem b
l
b

mass distribution matrix associated with subsystem b
u excitation frequency
u

0
centre frequency of frequency band

u
1

lower frequency of frequency band
u

2
upper frequency of frequency band

u
j

jth natural frequency
w

a
force distribution matrix associated with subsystem a

Subscripts

a, b, r subsystem
i interior degrees of freedom
c coupling of degrees of freedom
R asymptotic, in"nite value

Superscripts

u nodal co-ordinates
q uncoupled component modal co-ordinates
x coupled component modal co-ordinates
> global modal co-ordinates.
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